

CURRENT STATE OF PROGRAMMING IN

HIGH SCHOOLS AND UNIVERSITIES -

VERTICAL ANALYSIS IN CROATIA

Davor Fodrek

Lidija Kozina

Zlatko Stapić

Ivanec, August 2024

2

Authors Davor Fodrek, High School Ivanec

 Lidija Kozina, High School Ivanec

 Zlatko Stapić, Faculty of Organization and Informatics Varaždin

Project Object Oriented Programming for Fun

Project acronym OOP4FUN

Agreement number 2021-1-SK01-KA220-SCH-00027903

Project coordinator Žilinska univerzita v Žiline (Slovakia)

Project partners Sveučilište u Zagrebu (Croatia)

 Srednja škola Ivanec (Croatia)

 Univerzita Pardubice (Czech Republic)

 Gymnazium Pardubice (Czech Republic)

 Obchodna akademia Povazska Bystrica (Slovakia)

 Hochschule fuer Technik und Wirtschaft Dresden (Germany)

 Gymnasium Dresden-Plauen (Germany)

 Univerzitet u Beogradu (Serbia)

 Gimnazija Ivanjica (Serbia)

Year of publication August 2024

3

Table of contents

1. Analysis .. 7

1.1. Legislative framework ... 8

1.1.1. Law on the Croatian qualification framework ... 8

1.1.2. National qualification and occupation standards ... 9

1.1.3. National curriculum for preschool, elementary and high school education 10

1.1.4. Curriculum for informatics subject in elementary and grammar schools 10

1.1.5. Rulebook on taking the state matura exam .. 11

1.1.6. Curricula for programming related subjects in university studies 12

1.1.7. Conclusion on legislative analysis .. 13

1.2. Gap analysis ... 13

1.2.1. Freshmen students' prior competencies and knowledge analysis................................ 14

1.2.1.1. Introduction ... 14

1.2.1.2. Data analysis .. 15

1.2.2. Teachers' expectations – semi-structured interview .. 29

1.2.2.1. Introduction ... 29

1.2.2.2. Interview design .. 30

1.2.2.3. Conducting the interview .. 33

1.2.2.4. Deciding on analysis method ... 34

1.2.2.5. Case study 1 – experienced teacher .. 35

1.2.2.6. Case study 2 – young teacher .. 36

1.2.2.7. Case study 3 – teaching assistant / student demonstrator 38

1.2.2.8. Comparing cases .. 39

2. Conclusion on gap analysis .. 42

4

List of tables

Table 1 – Review of teachers‘ experience ... 40

5

List of charts

Chart 1 - Distribution of respondents by subjects... 16

Chart 2 - Distribution of respondents by type of high school ... 16

Chart 3 - Number of years taking informatics and related subjects in high school 17

Chart 4 - Number of years with programing contents within informatics subjects in high schools 18

Chart 5 - The way students acquired their programming knowledge .. 19

Chart 6 - Programming concepts that high school students are familiar with and have practical

experience ... 19

Chart 7 – Usage of programming languages by students in high schools ... 20

Chart 8 – Teamwork experience among students in high schools .. 21

Chart 9 – High school students' self assessment of programming knowledge 22

Chart 10 – How the students recognized the definition of an algorithm ... 23

Chart 11 – Recognition of basic algorithmic structures .. 23

Chart 12 – Results of three tasks with code analyses ... 24

Chart 13 – Distribution of students who are/are not familiar with basic OOP concepts 25

Chart 14 – Comparison of distributions of respondents by schools (all respondents) and respondents

by schools familiar with OOP concepts ... 26

Chart 15 - How the students recognized the definition of a class .. 27

Chart 16 - How the students recognized the definition of an object .. 27

Chart 17 – Understanding definitions of basic OOP concepts .. 28

Chart 18 – Characteristic of an abstract class ... 28

Chart 19 – Class/object relationship statements .. 29

6

List of pictures

Picture 1 – Introduction to the questionnaire in Croatian language .. 14

Picture 2 – Example of code section with iteration .. 24

Picture 3 - Responses – Semi-structured interview with teachers ... 30

7

1. Analysis

In the Republic of Croatia, the Croatian Qualifications Framework (HKO) is applied as an instrument for

applying the European Qualifications Framework to the entire education system. It also defines all

levels of education in Croatia. The levels of education are clearly defined and they range from

elementary school to a doctorate. It is also known exactly which qualifications are acquired upon

completion of a particular level of education, transitions from a lower to a higher level are facilitated,

as well as inclusion in international educational programs.

Levels of education that exist in Croatian education system are:

• elementary education

• vocational training

• one-year and two-year high school vocational education

• three-year vocational education

• grammar school education

• four-year and five-year high school vocational education

• professional studies with the completion of less than 180 ECTS points

• university undergraduate studies, professional undergraduate studies

• university graduate studies, specialist graduate professional studies, postgraduate specialist

studies

• postgraduate scientific master's studies

• postgraduate university (doctoral) studies

Unfortunately, there are sometimes inconsistencies between the levels of education in terms of

knowledge and skills acquired at a certain level of education, which are a prerequisite for continuing

education at a higher level. This can create certain problems in the continuation of the education of

individuals, as well as difficulties in the implementation of the teaching process due to the 'gaps' that

occur due to the aforementioned inconsistencies.

In this analysis, emphasis will be placed on the differences in education at the high school level and

university level, in terms of content related to object-oriented programming. The legislative framework

and basic documents within which education is carried out will be considered, the prior knowledge of

students in the first year of university courses and the teachers' expectations will be also analyzed,

which will finally result in identification of gaps between those two levels, in aspect of object oriented

programming topics.

8

1.1. Legislative framework

There are several fundamental documents that represent the basis of the high school education and

university education systems in Croatia. For the purposes of this analysis, the following legal acts will

be analyzed in particular:

1. Law on the Croatian qualification framework

2. National qualification and occupation standards

3. National curriculum for preschool, elementary and high school education

4. Curriculum for informatics subject in elementary and grammar schools

5. Rulebook on taking the state matura exam

6. Curricula for programming related subjects in university studies

1.1.1. Law on the Croatian qualification framework

The Croatian qualification framework (HKO) is a reform instrument that regulates the entire system of

qualifications at all educational levels in the Republic of Croatia through qualification standards based

on learning outcomes and harmonized with the needs of the labor market, the individuals and society

as a whole.

The Law on the Croatian Qualification Framework was adopted by the Croatian Parliament at its

session on February 8, 2013. The last amendment to the law was made in 2021.

In accordance with the Law, the following principles and goals of HKO are distinguished:

• ensuring the conditions for quality education and learning in accordance with the needs of

personal, social and economic development, social inclusion, and the abolition of all forms of

discrimination,

• development of personal and social responsibility and application of democratic principles in

respect of fundamental freedoms and rights and human dignity,

• strengthening the role of key competencies for lifelong learning,

• developing qualifications based on clearly defined learning outcomes,

• understanding of different qualifications and learning outcomes and their interrelationships,

• ensuring conditions for equal access to education throughout life, for multidirectional

horizontal and vertical mobility, acquisition and recognition of qualifications,

• ensuring economic growth based on scientific and technological development,

• strengthening the competitiveness of the Croatian economy, which is based on human

resources,

• achieving employability, individual and economic competitiveness and coordinated social

development based on education,

• establishment of a coordinated quality assurance system for existing and new qualifications,

• building a system of recognition and evaluation of non-formal and informal learning,

• establishment and sustainable development of partnership between holders and stakeholders

of the qualification system,

9

• ease of recognition and recognition of foreign qualifications in the Republic of Croatia and

Croatian qualifications abroad,

• participation in the process of European integration while respecting the guidelines given by

EQF and QF-EHEA, European Union guidelines and international regulations,

• preservation of the positive heritage of the Croatian educational tradition,

• improvement and promotion of education in the Republic of Croatia.

The Minister of Science and Education with the consent of the Minister of Labor and the Pension

System, the Minister of the Economy, the Minister of Entrepreneurship and Crafts, and the Minister of

Regional Development and European Union Funds, issued the Rulebook on the Register of the Croatian

Qualification Framework (HKO register), which was published in the Official Gazette, No. 62/2014. ,

May 22, 2014.

The HKO register is a system in which occupational standards are registered and linked to qualification

standards through sets of competences and sets of learning outcomes. All standards from the HKO

Register will be publicly available and will serve to develop new educational programs based on

learning outcomes, i.e. sets of competencies proven to be needed by the labor market.

The Law on the Croatian qualification framework is available on following link:

https://www.zakon.hr/z/566/Zakon-o-Hrvatskom-kvalifikacijskom-okviru

The Croatian qualification framework register is available on following link:

http://www.kvalifikacije.hr/hr/registar-hko

1.1.2. National qualification and occupation standards

The occupational standard contains the competencies which are crucial to practicing a certain

profession and the qualification standard contains key learning outcomes that must be contained in

any program leading to that qualification. The occupational standard is the result of agreement of

relevant stakeholders on the labor and education market about the optimal content of a particular

profession and about knowledge and skills with the associated independence and responsibility

(competencies). They are fortified with key tasks and competencies required for performance of these

jobs for a particular occupation. The qualification standard indicates the content and structure of

certain qualifications, and includes all data necessary to determine the level, volume and profile

qualifications, as well as the information required for ensuring and improving the quality of standards

qualifications1.

At the time of writing, there are 388 occupation standards and 109 qualification standards defined2.

1 source: Methodology for creating occupational standards and sets of competencies, retrieved on July 30,
2024 http://www.kvalifikacije.hr/sites/default/files/documents-publications/2021-
12/Metodologija%20za%20izradu%20standarda%20zanimanja%20i%20skupova%20kompetencija.pdf

2 source: Croatian qualification framework, retrieved on July 30, 2024, https://hko.srce.hr/registar/standardi

https://www.zakon.hr/z/566/Zakon-o-Hrvatskom-kvalifikacijskom-okviru
http://www.kvalifikacije.hr/hr/registar-hko
http://www.kvalifikacije.hr/sites/default/files/documents-publications/2021-12/Metodologija%20za%20izradu%20standarda%20zanimanja%20i%20skupova%20kompetencija.pdf
http://www.kvalifikacije.hr/sites/default/files/documents-publications/2021-12/Metodologija%20za%20izradu%20standarda%20zanimanja%20i%20skupova%20kompetencija.pdf
https://hko.srce.hr/registar/standardi

10

1.1.3. National curriculum for preschool, elementary and high school education

Education in elementary and high schools is based on the National curriculum, subjects' curricula and

school curriculum. National curriculum is adopted for individual levels and types of education in

accordance with the national curriculum framework document, which determines the elements of the

curriculum system for all levels and types of elementary and high school education at the general level.

National curriculum and the national curriculum framework document are adopted by the minister

responsible for education by decision.

The system of national curriculum documents that make up the complete National Curriculum consists

of:

• national curriculum for early and preschool education

• national curriculum for elementary education

• national curriculum for grammar school education

• national curriculum for vocational education

• national curriculum for artistic education

• curriculum areas and curricula of cross-curricular topics

• subject curricula and curricula for obtaining qualifications in the regular system of vocational

and artistic education

• a framework for evaluating learning processes and outcomes in the educational system

• a framework for encouraging and adapting learning experiences and valuing the

achievements of students with disabilities

• a framework for encouraging learning experiences and evaluating the achievements of

talented students3

National curricula are available on following link:

https://mzo.gov.hr/istaknute-teme/odgoj-i-obrazovanje/nacionalni-kurikulum/nacionalni-

kurikulumi/531

1.1.4. Curriculum for informatics subject in elementary and grammar schools

The last version of The curriculum of the informatics subject was adopted by the Ministry of Science

and Education on March 6, 2018 and it consists of the following:

• description of informatics subject

• educational goals of learning and teaching the curriculum in informatics

• domains in the organization of the informatics subject curriculum

3 source: National curriculum, Ministry of Science and Education, rerieved on July 30, 2024,
https://mzo.gov.hr/istaknute-teme/odgoj-i-obrazovanje/nacionalni-kurikulum/125

https://mzo.gov.hr/istaknute-teme/odgoj-i-obrazovanje/nacionalni-kurikulum/nacionalni-kurikulumi/531
https://mzo.gov.hr/istaknute-teme/odgoj-i-obrazovanje/nacionalni-kurikulum/nacionalni-kurikulumi/531
https://mzo.gov.hr/istaknute-teme/odgoj-i-obrazovanje/nacionalni-kurikulum/125

11

• educational outcomes, elaboration of outcomes, adoption levels and recommendations for

the achievement of educational outcomes by classes and domains with a list of literature

• presentation of the annual number of hours and form of implementation of the Informatics

subject in elementary schools and high schools

• list of recommended qualifications for Informatics teachers

Curriculum is made for 8 grades of elementary school and informatics is obligatory subject only in 5th

and 6th grade while in other grades it is taught as optional subject.

In grammar school, situation is a bit different. Curriculum for grammar school is made for 4 grades and

it is divided into three programs:

• general grammar school

• classic and language oriented grammar school

• science and mathematic oriented grammar school

In first two programs (general and classic and language oriented), curriculum for informatics is the

same. It means that educational outcomes, elaboration of outcomes, adoption levels and

recommendations for the achievement of educational outcomes by grades and domains are the same.

The difference is in which grade informatics is taught as obligatory subject. In grammar school,

informatics is obligatory in first grade while in other three grades students can choose it as optional

subject. That also depends on whether the school even offers informatics as an optional subject in the

remaining three grades. In classis and language oriented grammar schools, informatics is taught as

obligatory subject in second grade while in others is taught as optional. In all those programs,

informatics is taught two school hours a week and 35 weeks in school year, which results in 70 hours

a year in total.

In science and mathematic oriented grammar schools, informatics is obligatory subject in all four

grades and is taught two hours a week in each school year.

More specific details about learning outcomes and topics will be described later in gap analysis.

Curriculum for informatics subject is available on the following link:

https://mzo.gov.hr/istaknute-teme/odgoj-i-obrazovanje/nacionalni-kurikulum/predmetni-

kurikulumi/informatika/755

1.1.5. Rulebook on taking the state matura exam

The state matura is a mandatory final written exam that high school students take at the end of their

high school education. All grammar high school students are required to take the state matura exam,

while vocational students take the state matura exam only if they plan to continue their education at

one of the higher education institutions (universities). The state matura exam can be taken only by

vocational students in programs with four-year duration. The state matura examinations are

https://mzo.gov.hr/istaknute-teme/odgoj-i-obrazovanje/nacionalni-kurikulum/predmetni-kurikulumi/informatika/755
https://mzo.gov.hr/istaknute-teme/odgoj-i-obrazovanje/nacionalni-kurikulum/predmetni-kurikulumi/informatika/755

12

conducted in a standardized manner throughout the state at the same time and under equal conditions

and criteria for all students, that is, applicants.

State matura examinations consist of obligatory part exams and elective part exams. Exams of the

obligatory part consist of exams from the following subjects:

• Croatian language,

• Mathematics and

• foreign language.

The optional part of the matriculation exam is taken from other subjects that the students attended

during their high school education. The number of these subjects is not limited.

As mentioned before, grammar school students must take state matura exams. Successful completion

of obligatory subjects also means the successful completion of secondary education. At the moment,

all three obligatory subjects can be taken at the basic and advanced level. As part of the reform

processes in the education system in Croatia, starting in 2023, the mentioned obligatory subjects will

be taken at one common level.

Depending on the faculty, as well as the specific course, the high school graduate must choose the

subjects and the level they want to take. If the candidate chooses a level lower than the one required,

he will not be able to be listed when enrolling in the desired faculty.

More specific details about topics that are covered by matura exam will be described later in gap

analysis.

Rulebook on taking the matura exam is available on the following link:

https://www.ncvvo.hr/wp-content/uploads/2021/05/Pravilnik-o-polaganju-DM-procisceni-tekst1.pdf

1.1.6. Curricula for programming related subjects in university studies

The documents on curricula for programming related subject in university studies at Faculty of

organization and informatics, University of Zagreb, contain the mandatory information about

university courses. This document and information are used for the course and study program approval

from accreditation body as well as for students when analyzing study program in terms of the size,

content, literature and learning outcomes of the course.

The curricula documents for courses at Faculty of Organization and Informatics of University of Zagreb

are available at https://nastava.foi.hr/. By choosing the study program visitor would be provided with

the options to check the courses and their curricula and for the purpose of this analysis we have been

focusing on entry level study programs and particularly on programming courses:

• Programming 1 (Programiranje 1) at university study program

(https://nastava.foi.hr/course/214449/2022-2023)

• Introduction to programming (Uvod u programiranje) at professional study program

(https://nastava.foi.hr/course/228790/2022-2023/VZ)

https://www.ncvvo.hr/wp-content/uploads/2021/05/Pravilnik-o-polaganju-DM-procisceni-tekst1.pdf
https://nastava.foi.hr/
https://nastava.foi.hr/course/214449/2022-2023
https://nastava.foi.hr/course/228790/2022-2023/VZ

13

The detailed analysis of these documents would provide us with different sets of data including basic

information about the course (such as the course goal and description, study level and year, enrolment

status and precondition courses, number of hours for lectures, seminars and laboratory exercises) the

information about teachers, the information about course content (such as content of the lectures,

content of the seminars and laboratory exercises, learning outcomes of the course, learning outcomes

of the study program this course is contributing to, primary and additional literature and similar

courses at other universities) and assessment model (assessment elements for full time and part time

students, scoring, assessment schedule etc.).

However, although detailed, the curricula for university courses unfortunately does not contain any

information on required knowledge which the students should have from their high-school level, but

only the list of prerequisite courses that are to be completed prior to enrolling the particular analyzed

course. Expectedly, the list on prerequisite courses is empty for the courses which are taught at first

semester, which is actually from our interest in this analysis.

Further more, by taking the analysis of the course content, we can conclude that all programming

related courses taught at first semester cover both basic (high school level) and advanced (university

level) programming concepts.

This all brings us to the conclusion that although containing important information on particular

course, the curricula can not provide the information on vertical gap analysis between high-school

outcomes and university expectations that we need.

1.1.7. Conclusion on legislative analysis

Given that, at the legislative level, there are no requirements for the mandatory definition of

prerequisites for enrollment to universities, which are related to the computer and more specifically

programming skills of future university students, teachers of courses from the first year of study do

not expect students to have prior computer knowledge. For this reason, teachers at universities include

in the curricula of introductory courses also the concepts that should be covered in the computer

science and informatics classes in high school. Since there are no defined prerequisites that connect

the mentioned two levels of education (learning outcomes at the secondary school level and prior

knowledge for enrollment to universities), it was not possible to conduct a gap analysis exclusively

through the available prescribed and official documents.

Therefore, we designed our own methodology, which we used to identify the actual knowledge (prior

knowledge) of students in the first year of undergraduate studies and compared them with the

expectations of teachers teaching first-year courses.

1.2. Gap analysis

The purpose of this analysis was to determine the differences between the output provided by high

schools and the input required at the universities, in the aspect of the IT competencies and skills of

future university students, with special emphasis on knowledge and skills in the area of object oriented

14

programming. This analysis led to identification of gaps in teaching programming between two

mentioned levels of education in Croatia.

The methodology used to collect and analyze data consisted of the following:

1. freshmen students' prior competencies and knowledge analysis – questionnaire for students

2. teachers' expectations – semi-structured interview

3. analysis and comparison of collected data

1.2.1. Freshmen students' prior competencies and knowledge analysis

1.2.1.1. Introduction

The target group for this analysis of prior competencies and level of knowledge were freshmen

students (first year students) of undergraduate study in the field of computer science at the Faculty of

organization and informatics, Varaždin (University of Zagreb). Data were collected through an online

questionnaire using Microsoft Forms tool. The students received all the instructions, they were

informed about the purpose of conducting the questionnaire and asked to approach the questionnaire

as objectively as possible.

The questionnaire was divided into three parts:

1. general information

2. practical programming knowledge and skills

3. object oriented programming knowledge and skills

The questionnaire was anonymous, although students could enter their first and last name if they

wanted. It consisted of 30 questions and a total of 300 students filled out the questionnaire.

Questionnaire was made in Croatian language. All the respondents were given basic introduction and

instructions, which can be seen in Picture 1.

Picture 1 – Introduction to the questionnaire in Croatian language

15

When translated into English, the introduction to the questionnaire looks like this:

Knowledge and skills of students in the field of programming at the beginning of the first year of

undergraduate studies

This questionnaire aims to examine the level of knowledge and competence of students at the

beginning of the first year of undergraduate study in the field of computer science, with an emphasis

on knowledge and skills in the field of programming and problem solving. The questionnaire is

conducted as part of the Erasmus+ project called Object Oriented Programming for Fun (OOP4FUN),

led by the University of Žilina from Slovakia, and the Croatian partners participating in the project are

Faculty of Organization and Informatics Varaždin and High School Ivanec.

The questionnaire asks for the first and last name of the respondent, however, this field is optional so

that the respondent can choose whether he wants to remain anonymous or not. Filling out the

questionnaire takes about 15 minutes.

Please answer the questions independently and without using external sources of knowledge. If there

is no offered answer to a certain question that would fully satisfy your position, please answer with the

most similar answer.

Thank you for your cooperation!

After closing the questionnaire, results were exported in the Excel spreadsheet which is available in

the following link:

Questionnaire-results.xlsx

1.2.1.2. Data analysis

Students filled out a questionnaire within one of the courses they attend, namely Programming 1 and

Introduction to programming. The distribution of respondents by subjects can be seen in Chart 1.

https://carnet-my.sharepoint.com/:x:/g/personal/davor_fodrek_skole_hr/EQBF9NxAk7hGrHPdvVPbxr0BiARnGsfqMFwigp0ArU7-Og?e=CE4hnA

16

Chart 1 - Distribution of respondents by subjects

As shown on the chart, nearly 3/4 of the students (219 students) filled out the questionnaire within

the course Programming 1, while the rest filled it out within the course Introduction to programming.

In addition, the analysis shown that almost 2/3 of the students (194 students) wanted to remain

anonymous, while around 1/3 of students (106 students) put their names in the questionnaire. This

actually has no significance in the analysis, it is only informative, but also could mean that the students,

who entered their names, may have answered the questions more precisely and more reliably.

Students who were filling out the questionnaire came from different types of high schools. Some of

them are more related to the area of students' future education, some of them less. Distribution of

respondents by type of school they are coming from is shown in Chart 2.

Chart 2 - Distribution of respondents by type of high school

73%

27%

Distribution of respondents by subjects

Programming 1

Introduction to programming

3%

44%

40%

7%

6%

Distribution of respondents by type of high
school

Economic orientation schools

Technical orientation schools

General, language or classical
grammar schools

Science and mathematics
grammar schools

Others

17

As we can see, the vast majority of respondents came from schools that are technically oriented (44%)

and from general, language or classical grammar schools, gymnasiums (40%). Distribution of students

between those two types of schools is more or less equal, but we will see later that these two types of

schools are very different in terms of object oriented programming knowledge and skills. Then, we had

7% of students coming from science and mathematics grammar schools, 3% from economic schools

and 6% of students who filled out the questionnaire came from other types of schools.

After that, students were asked about how many years did they take the Informatics course (or a

course with related contents, for example Computing, etc.) in high school. They could choose between

1 and 5 years, because in Croatia there are no high schools, secondary programs or professions whose

duration is longer than 5 years. Distribution can be observed in Chart 3.

Chart 3 - Number of years taking informatics and related subjects in high school

Almost 51% of the respondents attended informatics subjects for 4 years in their high schools which is

quite high number. That means that over half of the students took informatics subjects during their

entire high school education, considering that 4-year high school education is most represented

(students with occupations which take less than 4 years couldn't take state matura exam and therefor

couldn't enroll to the university). On the other hand, almost 1/4 of the students took informatics

classes in high school for just 1 year. This is consistent with curricula of different high school programs

in which informatics is obligated in just 1 year of education (general, language or classical grammar

school and some 4-year vocational programs). That also means that students didn't have the option or

didn't want to enroll to informatics as optional subject in higher years of their high school education.

Related to the years of attending informatics subjects, we also asked students to give us information

about the years of studying contents with programming topics and results are shown in Chart 4. We

can see that almost half of students (42%) encountered programming topics in just 1 year of their high

school education. This is in relation with earlier chart where almost 25% of students attended only 1

year of informatics subject in general and the rest of students (who have more than 1 year of

informatics) attended programs where programming is implemented in just 1 year of entire

23,0%

20,0%

6,0%

50,7%

0,3%

Number of years taking informatics (and related)
subjects

1 year

2 years

3 years

4 years

5 years

18

informatics curricula). We can see that 19% of students encountered with programming for 2 years,

10% for 3 years and 29% for 4 years of high school education.

Chart 4 - Number of years with programing contents within informatics subjects in high schools

Besides basic informatics subjects, some students were enrolled to other subjects that were including

programming topics in their curricula. Some of those subjects are: Web design, Scripting languages

and web programming, Computer networks, CNC technologies, Microprocessors, Microcontrollers,

Programming, Databases, Advanced and object oriented programming etc. Despite variety of the other

subjects that students were enrolled to, only 28% of them stated that they were attending those

subjects, besides informatics.

Regarding the way students were gaining knowledge about programming, results are as follows: 62%

of the students stated that their programming knowledge is based solely on the content that was

required to pass the exam, 28% of the students stated that, in addition to the content that was covered

at school, they independently researched additional content and only 10% of students put extra effort

into acquiring additional programming knowledge and skills by exploring areas that exceeded by far

the scope of content taught in high school. This results are displayed in Chart 5.

42%

19%

10%

29%

Number of years with programming contents

1 year

2 years

3 years

4 years

19

Chart 5 - The way students acquired their programming knowledge

We can conclude that students are not eager for self-learning or very interested in acquiring additional

programming skills during their high school education.

After that, students were asked more specific questions about programming, about programming

concepts that they recognize and which they have practical experience with. They could choose

between 21 different topics and could also add their own answers that were not offered. The question

was of the multiple-choice type, so they could choose more than one answer. The results are shown

in Chart 6.

Chart 6 - Programming concepts that high school students are familiar with and have practical experience

62%
28%

10%

How the students gained their programming
knowledge

My programming knowledge is based solely
on the content that was required to pass the
exam

In addition to the content that was covered
at school, I independently researched
additional content related to the units that
were covered at school

I put extra effort into acquiring programming
knowledge and skills by exploring areas that
exceeded by far the scope of content taught
in high school

212
175

118
192

217
77

54
95

138
113

126
61

50
30

63
7

70
44

11
6

41
12

algorithms

pseudolanguage, pseudocode

flowcharts

data types and variables

data input and output

selection

iteration

functions

strings

arrays and lists

files and databases

graphics

recursion

stack

search and sorting algorithms

cryptographic algorithms

object oriented programming

network programming

multithreading programming

multiprocessing programming

graphs

nothing of mentioned above

Programming concepts that students were working with

20

We can see that algorithms and basic input and output are concepts that students are most familiar

with. This is understandable since these two concepts represent the basics of programming in general.

Besides those two, students also have experience with data types and variables, then pseudocode and

pseudo language. It is also evident that almost 3/4 of respondents never worked with selections every

sixth student worked with iterations. This is a bit unlikely because these two concepts are also

representing the basics of programming and they are implemented in informatics curricula of most of

high school programs. It is more likely that students didn't recognize those concepts by their names.

At the bottom of the list of experiences with programming concepts are concepts like multiprocessing

programming, cryptographic algorithms and multithreading programming. That is understandable

because those concepts are not concluded into regular curricula of high school subjects, so it is likely

that the students who chose these concepts gained experience through independent work. It is also

important to mention here that less than 1/4 of the students have experience with object-oriented

programming, and also that 12 students (4%) didn't work with any of the following concepts.

It is also interesting to see the results of the usage of different programming languages. These results

can be seen in Chart 7.

Chart 7 – Usage of programming languages by students in high schools

We can see that more than half of the students worked with C or C++ in high school and also half of

the students worked in Python. It is also important to note here that the question was multiple choice,

so that one respondent could choose more than one answer. Of the object oriented languages, it is

also important to mention Java, in which 28 students worked, and C# with 20 answers. Of the other

languages, the most represented are scripting languages and languages for creating web pages

(JavaScript in which worked over 1/5 of the respondents, then PHP, HTML etc.). Unfortunately, it is

163

150

66

28

20

16

23

21

C/C++

Python

JavaScript

Java

C#

PHP

Others

None

Usage of programming languages

21

worrying that 21 students (7%) did not work in any programming language at all during their high

school education.

The next question was about teamwork experience in high schools. Results are shown in Chart 8. We

can see that 2/3 of the students didn't work in teams, while 1/3 of them did. These results coincide

with the results of a horizontal analysis conducted among high schools in the partner countries of the

project.

Chart 8 – Teamwork experience among students in high schools

The last question of this part of the questionnaire related to the students' self-assessment of

programming knowledge, on a scale from 1 to 10, where 1 represents only a basic level of knowledge,

and 10 represents the ability to independently solve very complex problems. Results are shown in

Chart 9.

66%

34%

Teamwork experience

No

Yes

22

Chart 9 – High school students' self assessment of programming knowledge

We can see that the number of the students is inversely proportional to the degree of problem solving

ability. Over 3/4 of the students think that their programming knowledge is bellow average (scales 1-

5) and less than 1/4 of the students think otherwise (scales 6-10). It is interesting that none of the

students gave their knowledge the highest grade. We can conclude that students are aware that they

do not possess sufficient competencies and abilities in the field of programming.

Second part of the questionnaire was related to the practical programming knowledge and skills. The

students were given several questions from the field of programming (basic terms) and several specific

program segments that they had to analyze.

First question was about the definition of the algorithm. The students were given a definition, and they

should have recognized that it was a definition of an algorithm. There was also 'I don't know' answer

available, just to ensure that students don't guess the correct answer. Results are shown in Chart 10.

70

46 47

29

40
34

17

10
7

0

1 2 3 4 5 6 7 8 9 10

Self-assessment of programming knowledge on a
scale from 1 to 10

71%6%

4%

3%

16%

A precise instruction or set of instructions on
how to solve a problem is called…

Algorithm

Programming language

Sequence

Interpreter

I don't know the answer

23

Chart 10 – How the students recognized the definition of an algorithm

We can see that 71% of the students did recognize the definition of an algorithm, which is reasonable

number of correct answers. 13% of the students didn't recognize it, they thought is was about some

other programming concept, and 16% of the students didn't know the correct answer. On the other

hand, if we sum it up, almost 30% of students do not recognize the definition of an algorithm, which is

a very high percentage, considering that it is one of the most basic concepts in programming.

The next question was about basic algorithmic structures in programming. Students were offered the

names of three basic algorithmic structures (sequence, selection, iteration) along with some additional

terms that are not (variable, function). Results can be seen in Chart 11.

Chart 11 – Recognition of basic algorithmic structures

We can see that only 8% of the students correctly recognized all three algorithmic structures, while

58% of the students chose some other combination of terms. Some of those terms were correct, but

in general, their answers were not entirely correct. 34% of the students did not offer an answer to that

question.

After those two questions, students were given three program sections where they had to analyze the

code sections and offer an answer (what the program section will print as a result). First question was

a section containing only sequence, second question was a section of code containing two selections

and third one was with iteration. The example of the code (question with iteration) is shown in Picture

2 and the results are displayed in Chart 12.

8%

58%

34%

Basic algorithmic structures

Correct answer (sequence,
selection, iteration)

Wrong answer (combination
of incorrect terms)

I don't know the answer

24

Picture 2 – Example of code section with iteration

Chart 12 – Results of three tasks with code analyses

We can see that first task (section with code containing simple sequence structure and arithmetic

operators) was successfully solved by 178 students (59%), while 41% of them either answered the

question wrong or didn't know the answer. Second task with two selections was answered correctly

by only 53 students (18%), while majority (82%) didn't offer the answer or offered wrong answer. Third

question containing code with one iteration and arithmetic operators was solved by 107 students

(36%), while most of them, again, offered no answer or wrong answer (64%). We can conclude that

many of the students lack basic skills in analyzing program codes and often do not recognize how a

certain program structure works. Also, they miscalculate results using arithmetic operators. It is also

interesting to note that only 37 students (12%) offered the correct answer to all 3 tasks.

178

51

71

53

197

50

107
122

71

Correct answer Wrong answer I don't know

Code analyses

Code analysis with arithmetic
operators using only sequence

Code analysis with two selections

Code analysis with one iteration and
aritmetic operators

25

After those three examples of analyzing code sections, students got two more questions: about

recursion and sorting algorithms. 53% of the students wasn't familiar with recursion and couldn't

define it, while only 17% of the students could define recursion properly and recognize it's properties.

Regarding question with sorting algorithms, 41% of the students couldn't choose correct sorting

algorithm's from the list. Only 6% of the students correctly chose the sorting algorithms from the

offered list, while 53% chose not to answer that question.

Third part of the questionnaire was dedicated to object oriented programming. Given that the

OOP4FUN project is directly related to OOP, we thought it would be a good idea to see how familiar

the students are with the mentioned concepts.

The first question in this part was again about student's self-assessment, but this time we asked them

if they believe they recognize and can handle basic OOP concepts and have certain knowledge and

experience in the field of object oriented programming. Only the students who answered with 'Yes' to

that question were allowed to proceed with last set of questions. Results are shown in Chart 13.

Chart 13 – Distribution of students who are/are not familiar with basic OOP concepts

We can observe that 30% of the students think they are familiar with basic OOP concepts, they can

recognize and handle them and have certain knowledge and experience in the field of OOP. 70% of the

students have not encountered the mentioned concepts, that is, they consider that they do not have

basic knowledge about the mentioned topic.

It is also interesting to see this distribution among different type of high schools. We analyzed how

many of those 30% of students attended certain type of school and whether this distribution coincides

with the distribution of the total number of respondents by school types. The comparison can be

observed in Chart 14.

30%

70%

Students are familiar with OOP concepts

Yes

No

3%

44%

7%

6%

Distribution of respondents by
type of high school

1%

64%21%

10%

4%

Distribution of OOP "Yes"
respondents by type of high school

Economic orientation
schools

Technical orientation
schools

General, language or
classical grammar schools

26

http://www.kvalifikacije.hr/hr

https://hko.srce.hr/registar/

https://www.zakon.hr/z/566/Zakon-o-Hrvatskom-kvalifikacijskom-okviru

Chart 14 – Comparison of distributions of respondents by schools (all respondents) and respondents by schools familiar with

OOP concepts

We can see that, regarding economy oriented schools and science and mathematic grammar schools,

there is no big difference in the distribution between the total number of respondents and

respondents who think that are familiar with OOP concepts. But, the difference is noticeable in

technical schools on the one hand, and gymnasiums on the other. The difference is visible in favor of

technical schools, they have 44% of all respondents but 64% of respondents with OOP knowledge,

while gymnasiums have 40% of all respondents and only 21% of respondents with OOP knowledge.

One of the possible reasons for this difference is that OOP in gymnasiums, according to the subject

curricula, is only done within the elective subject of Informatics and only in one year, while in some

technical schools, especially the ones that are IT-oriented, the numbers of subjects (and hours

dedicated to OOP) is significantly bigger.

As mentioned earlier, only 30% of the respondents were going through the rest of questionnaire and

their answers were analyzed. They were asked about basic OOP concepts and the purpose of those

questions was to check if those students have understandings of basic theoretical concepts and terms

related to OOP.

First, students were asked about classes and objects and understanding of their definitions. The results

are shown in Charts 15 and 16. The students were given the definitions of class and object and they

should have recognized which term has been described.

http://www.kvalifikacije.hr/hr
https://hko.srce.hr/registar/
https://www.zakon.hr/z/566/Zakon-o-Hrvatskom-kvalifikacijskom-okviru

27

Chart 15 - How the students recognized the definition of a class

Chart 16 - How the students recognized the definition of an object

We can see that only 33% of the students did recognize the definition of a class, which is very low

percentage considering that only a subset of respondents who claimed that are familiar with OOP

concepts answered this and other following questions. 55% of the students didn't recognize it, they

thought is was about some other programming concept, and 12% of the students didn't know the

correct answer. Situation with object question is a bit better, but not satisfying. 43% of the students

did know the definition of an object, while 37% offered wrong answer. The answer to that question

was not offered by 20% of the students.

35%

33%

7%

13%

12%

A set of real-world entities that have similar
properties and behaviors is called...

Object

Class

Method

Attribute

I don't know the answer

10%

43%

2%

25%

20%

A concrete entity from the real world in object
oriented programming is called...

Class

Object

Method

Attribute

I don't know the answer

28

After that, students should have demonstrated an understanding of basic OOP concepts. They were

given definitions of concepts and had to associate them with the correct name. The results are

displayed in Chart 17.

Chart 17 – Understanding definitions of basic OOP concepts

We can see that most of students are not sure about defining basic OOP concepts. 45% of them

correctly recognized encapsulation, 32% of them are familiar with polymorphism, 41% correctly

associated inheritance and 35% were right about abstraction. Most of the students were not sure

about the correct answers or didn't offer the answer. It is also worth to mention that 25 students (out

of 91) correctly associated all four concepts.

Then, the students were asked one more questions about classes, specifically about abstract classes

and results are shown in Chart 18.

Chart 18 – Characteristic of an abstract class

45

32

41

35

20

35

24
2626

24
26

30

A concept where both data
and methods are placed in

the same object

A concept where methods
from the superclass can be

used, but also modified
methods in the subclass

A concept where a
subclass uses the data and
functional capabilities of

the superclass

A concept that describes
modeling an object so that

only the necessary real-
world components are

used

Definitions of basic OOP concepts

Correct answer

Wrong answer

I don't know

50%

19%

31%

An abstract class is a class that cannot be
inherited by other classes...

True

False

I don't know

29

We can see that most of the students don't understand the concept of abstract classes, only 19% of

them offered correct answer.

At the end, students were asked about object-class relationship. The were offered with several

statements and they had to choose if a particular statement is correct or wrong. The results are

displayed in Chart 19.

Chart 19 – Class/object relationship statements

Students were again unsure about relationship between classes and objects, answers are mixed, on

three statements students offered incorrect answer, while on only one statement more students

offered correct answer. Further analysis shown that just 18 students (20%) correctly answered that

question entirely.

1.2.2. Teachers' expectations – semi-structured interview

1.2.2.1. Introduction

Given the fact that there is no legislative framework which would define the formal connection

between the learning outcomes achieved at the high-school level and the pre-knowledge required to

enroll a specific course at the university, and as previously defined, we took the approach to conduct

limited-size research and compare the real knowledge of the freshmen students (see previous chapter)

with the expectations from the teachers. We have identified two entry level courses at Faculty of

Organization and Informatics, University of Zagreb (already mentioned in previous chapters) and

wanted to include teachers teaching at exactly the same courses into this analysis. Thus, we have

32 26
38

47

59 65
53

44

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Each object is an instance
of a class

Each class must have at
least one object

Objects are instantiated
using the class constructor

Any number of objects can
be instantiated from one

class

What is correct about class-object relationship…

True False/No answer

30

prepared a semi-structured interview to be carried out with these teachers. In this chapter we will

bring you the information on the results obtained.

1.2.2.2. Interview design

Before conducting the interview, we prepared a set of questions that would be focused during the

interview with teachers. The questions were divided into the following groups:

• Questions related to teacher profile and experience

• Satisfaction with entry programming knowledge in general

• Expectations related to programming knowledge

• Expectations related to programming competences

• Expectations related to programming skills

 In order to note down the answers the spreadsheet document was prepared. See Picture 3 below.

Picture 3 - Responses – Semi-structured interview with teachers

This set of questions didn’t include any personal or sensitive information on teachers or students and

thus there was no need to request the permission from the Committee for Ethical Matters (HR: Etičko

povjerenstvo) at the Faculty of Organization and informatics prior to conducting this interview.

However, the detailed instructions for the interviewers are prepared in advance. Those instructions

are attached in the text below.

Also, special care was taken to avoid discussing any particular student or teacher directly or indirectly

during the interview. All questions were placed by focusing on programming course in general or on

students’ population in general.

This interview design along with template to note the answers were shared with partners from Slovakia

and Serbia to enable them to use the same/similar methodology in their vertical analysis.

The interviewer was the author of this chapter. To make the interview straight forward, to make sure

the important information is presented to the interviewed teachers and to make the same flow of the

interview in each instance of it, the detailed guidelines were prepared in advance and are copy-pasted

here as follows:

31

Instructions for the interviewer

Note that the texts in blue are instructions for the interviewer (questions are written in black).

The answers must be written in the provided template (excel file).

All questions are optional.

The interview is to be held informally, in a conversation-like style and in Croatian language.

Introduction

a. Explain the purpose of the interview:

The University of Zagreb, Faculty of organization and informatics along with four other

universities from Slovakia, Germany, the Czech Republic, and Serbia, and five high schools from

the same countries is running an Erasmus+ project which aims to identify and eliminate the

gaps between high school learning outcomes and university required input skills and

knowledge related to object-oriented programming. One of the outputs of the project will be

an innovative high school course in games development which will introduce high school

students to the basic concepts of object-oriented programming (in order to better prepare

students for universities as well as to increase their motivation for enrolling in STEM study

programs in general). Thus, we are currently analysing the gap in the high-school outputs and

the university inputs requirements.

At the beginning of the semester we gave to the students the short test and we obtained their

entry knowledge, and now we want to align that knowledge with the expectations from the

teachers.

As a university teacher, with years of experience and by teaching the freshmen students you

have the first contact with them, you have the insight into their knowledge which they brought

with them to the university, and we hope you could give us insight on the level of alignment of

that knowledge with the ideal or expected knowledge the freshmen should have. Thus, with

this interview, we would like to ask you about your experiences and expectations which are

related to mentioned concepts.

b. Explain that the answers will be treated anonymously.

All obtained answers, opinions, suggestions and other inputs that you will give us during this

semi-structured interview will be generalized and treated completely anonymously. Also, all

the questions are optional for answering and you can decide if you want to answer any given

question or not.

General questions on teachers profile

1. Some personal information is needed to contextualize the answers regarding other responders.

Name (will be deleted after the analysis), entry study program teacher is teaching, experience

in teaching.

32

Satisfaction with entry programming knowledge in general

2. Are you satisfied with students pre-knowledge in programming in general? The possible

answers (YES / NO) are in the template, please write the answers in the provided template –

Excel file)

3. Are there any comments you would like to point out related to students programming pre-

knowledge in general? Comments, if any should be written in Excel file. The comments are free

style comments, thus teachers could comment anything related to their satisfaction or other

aspects relevant to pre-knowledge, gaining it etc.

Expectations related to programming knowledge

Introduction: The knowledge is the possibility to reproduce the facts about the subject of interest.

Please ask questions before giving examples, and use examples only if necessary.

4. Which programming knowledge first year (freshmen) students should have when enrolling your

course?

5. Which programming knowledge have you noticed that first year (freshmen) students do have

when enrolling your course?

6. Which programming knowledge have you noticed that first year (freshmen) students do NOT

have when enrolling your course?

7. Are there any comments you would like to point out related to students’ programming

knowledge expectations we have just discussed about?

Expectations related to programming skills

Introduction: The skill is the ability to perform certain physical tasks or activities in the desired way.

Please ask questions before giving examples, and use examples only if necessary.

8. Which programming skills first year (freshmen) students should have when enrolling your

course?

9. Which programming skills have you noticed that first year (freshmen) students do have when

enrolling your course?

10. Which programming skills have you noticed that first year (freshmen) students do NOT have

when enrolling your course?

11. Are there any comments you would like to point out related to students’ programming skills

expectations we have just discussed about?

Expectations related to programming competences

33

Introduction: The competencies are the broader term that includes the skills, knowledge and attributes

that enable a person to perform effectively in a job or situation. Please ask questions before giving

examples, and use examples only if necessary.

12. Which programming competences first year (freshmen) students should have when enrolling

your course?

13. Which programming competences have you noticed that first year (freshmen) students do have

when enrolling your course?

14. Which programming competences have you noticed that first year (freshmen) students do NOT

have when enrolling your course?

15. Are there any comments you would like to point out related to students’ programming

competences expectations we have just discussed about?

Closing the interview

16. Finally, are there any other aspect or factors you think are important to be considered when

analysing the pre-knowledge and the gap between university expectations and what students

actually bring? Is there anything you wish to add?

Closing of interview: Thank you very much for your cooperation. It has been exciting to talk with you,

and I am sure your help will be of great use in the study we are conducting. I wonder if I can contact

you on a future occasion to request further clarification of information or any additional contribution

to the project.

1.2.2.3. Conducting the interview

In order to conduct this semi-structured interview, the e-mail message with the request to participate

in this semi-structured interview has been sent to all teachers who are teaching programming related

courses in first semester of our university study program and professional study program. However,

only three (3) teachers have positively responded to the inquiry and the interviews were organized

during December 2022.

The interviews were completed in the time frame between 63 minutes (of the shortest) and 86 minutes

(of the longest interview). However, due to the fact that the interviewer and the teachers

(interviewees) have long term collaboration in different activities and are working at the same

34

institution, the interviews took place as the informal meetings. Thus, the interviewer tried to utilize

the time and to maximally focus on the interview instead of personal chat or discussions.

1.2.2.4. Deciding on analysis method

Although not initially planned, all the mentioned remarks and observations obtained from the teachers

are noted down by the interviewer, as they now became the only data we have. Saying it in another

words, instead of obtaining structured or semi-structured data on our primary topic, we have received

a lots of unstructured data related to different (sometimes only partially connected) topics.

As a result, we had to decide which method or approach of data analysis to use to analyze such

unstructured data obtained by the interview. With some previous experience in such analyzes and

after the eliminating all the options that are suitable for more structured or quantitative data we

narrowed our list of possibilities down to a three possible methods:

• Qualitative content analysis / Coding analysis: Coding involves categorizing and labeling the

data. This method would allow us to identify patterns and themes across the data. It can be

done manually or with the help of software such as NVivo.

• Thematic analysis: a qualitative research method that uses data from interviews, focus groups,

or other sources to identify patterns or themes in the data. We could use thematic analysis to

identify the underlying motivations and attitudes behind the responses given in semi-

structured interviews.

• Case study analysis: involves collecting and analyzing qualitative data to gain a deeper

understanding of the research problem. This method can be used to analyze the data from

semi-structured interviews as it provides an opportunity to explore in depth the responses of

the interviewees and gain insights into their experiences and beliefs.

Finally, we have decided to use case study analysis as it is advantageous over coding and thematic

analysis methods in analyzing text-data obtained from semi-structured interviews because it allows

for a deeper exploration of the data. According to the literature, the case study approach allows the

researcher to uncover deeper insights into the phenomenon of interest and to provide a more

comprehensive understanding of the data. In sum, the case study approach would provide us with a

more comprehensive view of the data, which is not possible through coding or thematic analysis

methods.

As the three interviewed teachers had quite different positions and experience, we decided to perform

three case studies and to seek for the conclusions important for our research of gap analysis from

However, the semi-structured interview with all teachers resulted in unexpected flow of discussion which

was determined by the fact that teachers do not have knowledge expectations from freshmen students,

and the courses are organized in a way that they teach students from scratch. Thus, instead of answering

a straight forward questions they gave to the interviewer lots of other, personal, remarks and

observations. Consequently, during the interviews some of stated questions were only partially

answered while some remained completely unanswered as teachers didn’t have any expectations at all.

35

experienced teacher, young teacher and young teaching assistant who has experience as student

demonstrator.

1.2.2.5. Case study 1 – experienced teacher

Persona description – This teacher has more than 25 years of experience in teaching mainly on entry

level programming courses such as Introduction to programming, Programming 1, Programming 2,

Object oriented programming etc.

Satisfaction with students’ prior knowledge in general – Due to the fact that there are no formal

expectations for students to meet in order to enroll the courses, teacher avoids to explicitly express

the satisfaction on students’ prior knowledge on programming in general. His experiences are that

students have a very diverse range of prior knowledge, from those who know nothing to those who

have a lot of theoretical and applied knowledge and skills. His assessment is that about 10% of students

have acquired knowledge independently while about 40% of students have some prior knowledge

which can be used in subjects related to programming.

Concerning prior knowledge, the teacher states that the problem was when students had experience

with Visual Basic, as they were not prepared to delve deeper into the essence of the problem and the

algorithms. The bigger issue was the lack of programming practices and habits rather than the prior

knowledge itself. Based on teachers’ own scientific research, even 13% said they had a fear of

programming. Those who had experience with Python said they had less fear of programming but more

often said C++ was challenging, as we are talking about a lot of material to be learnt by students in a

short timeframe.

Programming knowledge students should/don’t have – Teacher thinks that only after mastering the

basic programming skills and habits, such as programming thinking, students should learn loops,

selections, process and basic data structures in order to be able to independently create complex

structures. The programming language itself is not the primary concern. Rather, they should have

general IT knowledge, and after the mentioned concepts have been learned, they should familiarize

themselves with a specific programming language and afterwards with its syntax. It is beneficial for

students to have a general knowledge in IT, especially in a programming environment. Ideally, they

should have a knowledge of C and C++, and be able to create algorithms. Being able to code and debug

programs in any language, regardless of the syntax, would be an advantage. Although understanding

the concepts of object-oriented programming (OOP) is beneficial, teacher thinks that when discussing

programming in a school setting, it can be assumed that only a small percentage of students will have

encountered Object-Oriented Programming (OOP). Students may have encountered objects in

languages like JavaScript or Python, but the concepts of OOP go beyond the concepts of structural

programming. Utilizing a tool like Alice, which provides a 3D world to guide students, can help those

who have not been exposed to structural programming learn OOP. Possessing basic knowledge of

computer science is beneficial in any programming environment. Experience with coding, regardless

of the programming language, is beneficial as it allows students to gain insight into the different types

of programming cycles. The exact knowledge is not as important as the concepts behind it.

Competences students should/don’t have – Experienced teacher thinks that it would be highly

beneficial if students' programming skills were developed in the high school to the point where they

36

could implement basic algorithms. However, according to his experiences there are fewer than 10% of

students who can traverse an array, find the largest element in an array, or similar with the high school

knowledge. Now, the basic computing skills of students entering college are much better than they

used to be. The situation is significantly better than it was and we are generally satisfied with it.

Skills students should/don’t have – Teacher again emphasizes that programming skills and habits are

very important. Thinking in a programming way, in terms of solving problems in a programming way is

very important. Programming habits that include activities that make up good programming practices

include syntax checking, testing requirements, and that the student must go through all their code

blocks, etc.

Several conclusions that could be driven from the first case study, which are related to student’s prior

knowledge in programming, are:

1. Students enrolling university have a diverse range of prior knowledge, from those who know

nothing to those with a lot of theoretical and applied knowledge and skills.

2. As much as 13% of students enrolling university have a fear of programming. Those who

programmed in Python have less fear but more challenges in learning C or C++.

3. Only up to 10% of enrolling students can find largest element in array with the high school

knowledge.

4. It is beneficial for students to have general IT knowledge and knowledge of C and C++, and be

able to create algorithms.

5. Students in high school should learn basic programming skills and habits, such as loops,

selections, process and basic data structures.

6. Utilizing a tool like Alice can help those who have not been exposed to structural programming

learn OOP.

7. It is important for students to learn in high school to think in a programming way when solving

problems.

8. Good programming practices which include syntax checking, testing requirements, and going

through all code blocks should be acquired in high school.

9. Basic computing skills of students entering college are much better than they used to be.

1.2.2.6. Case study 2 – young teacher

Persona description – This teacher has about 15+ years of programming experience and about 10 years

of teaching experience. He has been teaching entry level courses on both university and professional

study programs.

Satisfaction with students’ prior knowledge in general – Young teacher also stated that he does not

have any particular expectations in terms of prior knowledge of students when enrolling the university.

However, he is aware that starting from the zero-knowledge point and educating students from there

requires a significant amount of time and the teacher states that the current curriculum of

(introductory) programming courses does not plan sufficient teaching hours, which turn out to be

necessary in such an ecosystem.

The teacher states that if we were to require any prior-knowledge in programming of freshman

students, we would have to amend our university curriculum, which is intentionally built to cover the

37

topics in programming from the beginning. Therefore, the teacher believes that general IT knowledge

is more important for students.

If we presume that we would require notable prior-knowledge in programming of freshman students,

the young teacher thinks that the legislative framework should also be changed to accommodate such

requirements, but also to provide a solid basis for high school reform. This teacher also points out that,

due to the fact that IT experts are not eager to teach, especially in high schools, where salaries are

rather low, the principals are forced to employ teachers who have only partial knowledge in

informatics, and thus they are unable to cover higher demands in teaching students programming. The

legislative framework should also address this issue.

Programming knowledge students should/don’t have – The teacher said that it is hard to answer this

question and that it is relative on the point of view regarding what knowledge should students bring

with them. However, previously stated facts are underpinned in this part of the interview as well. The

young teacher pointed out again that for our case, the basic IT literacy should be present, such as

knowing and understanding how to work in a given operation system when enrolling the faculty.

Second underpinned statement from this teacher is that the knowledge in mathematics and logic are

the closest what one get learn in high school and that would help in software problem solving and

thinking. Thus, basic IT literacy as well as knowledge in logic and mathematics, will help student to go

through university curricula.

Ideally, if possible, when enrolling the university, student should be familiar with variables, data types,

selections, iterations and functions. Quite contrary to the results of case study 1, the young teacher

thinks that students will eventually learn on their own an algorithmic problem solving if possessing

above mentioned knowledge. By taking into consideration the issues in high-school education system,

that were mentioned in the previous chapter, this teacher puts lots of focus on students’ self-learning

capabilities, and thus the teacher gave us the advice to try to have out of this project two results,

namely: a portal with self-learning materials for freshmen students and; try to organize the education

for teachers as well.

To conclude, having the above mentioned, anybody who enrolls the university with some theoretical

or applicative knowledge will have an advantage over other students in obtaining course learning

outcomes related to programming and object-oriented-programming.

Competences students should/don’t have – Young teacher was quite pessimistic by stating that

majority of the students do not possess any competences or skills worth mentioning. This makes them

feel fear. The teacher mentioned that having a theoretical knowledge does not guarantee any

competences. Only the knowledge underpinned by practical skills means competence. The

competences the students should really bring are related to the knowledge and skills in algorithmic

problem solving, but as previously stated this is something lacked by vast majority of freshmen.

Skills students should/don’t have – Our interview did not yield anything new that would be worth

mentioning in the section on skills. We just went again through those requirements mentioned before

and discussed about what would be related to knowledge, competences and lections.

Several conclusions that could be driven from the second case study, which are related to students’

prior knowledge in programming, are:

38

1. Current curriculum of (introductory) programming is built with a prejudice that students do

not have any prior-knowledge.

2. Sadly, current curriculum of (introductory) programming courses does not plan sufficient

teaching hours as we have to teach students programming from scratch.

3. To change this, new curriculum should be developed, but more importantly a new legislative

framework should also be developed to cover some other issues, such as to improve the

motivation for teachers with programming knowledge to come and teach in high schools.

4. In current situation, basic IT literacy as well as knowledge in logic and mathematics, will help

student to go through university curricula. Actually any theoretical or practical knowledge

will help a lot.

5. If possible, when enrolling the university, student should be familiar with variables, data

types, selections, iterations and functions.

6. Young teacher thinks that although freshmen students in general don’t posses any notable

competences or skills related to programming, with adequate materials, they are capable of

self-learning algorithmic problem solving.

7. Education of high school teachers is very important.

1.2.2.7. Case study 3 – teaching assistant / student demonstrator

Persona description – This teaching assistant was just employed at the university but has several years

of experience of being a student demonstrator and was in contact with freshmen students on different

courses, including programming related ones. Contrary to previous teachers, this teaching assistant

has experience of working with university study program students but not with professional study

program students.

Satisfaction with students’ prior knowledge in general – Student demonstrator explicitly states his

unsatisfaction with students’ prior knowledge in programming. Although, unsatisfied, he also argues

that we cannot expect from students a lot and that both answers could be taken in consideration

depending on the point of view. He argues that majority of the students after enrolling the first year

of college for a few weeks or months even don’t know “where they are and what is going on”. On the

other hand, we can be unsatisfied as they seem not to be very interested in programming. Thus, he

concludes that maybe high schools could motivate students to find enjoyment in coding.

Programming knowledge students should/don’t have – This teacher notices that those students who

finished technical high schools are generally the only ones who actually have some kind of programming

knowledge whatsoever. Their knowledge consists of variables, if/for blocks and simple arrays. Rarely

anyone knows how to create a linked list. However, in general, students have no idea about OOP,

classes etc. Problem is that basically they see no purpose in packing variables into a common structures

or objects.

To conclude on this question, this teaching assistant thinks that understanding of variables and variable

types, basic syntax of flow and structure, data types and functions would be desirable knowledge from

high-school students.

Competences students should/don’t have – In order to make their way through introductory classes

of object programming with flying colors, the opinion of student demonstrator is that, enrolling

39

students should have the basic idea how to make up an algorithm which includes the use of variables,

selection, iteration and functions. It would be also beneficiary if they would know how to automatically

pack any data in structures in their minds.

However, the experience of this teaching assistant / student demonstrator is quite opposite. When

students arrive at our university, most of them don't have a clue how to write (good) code. Most of

them struggle with the very basics of programming. Some even fail to understand the purpose of

variables. Usually, students struggle with concepts behind nested for-loops. Those with better

knowledge are usually overconfident and stop actively attending classes. Some of them pay the price

by failing and attending the course again next year.

Skills students should/don’t have – The discussion on skills students should/don’t have led us back to

repeating or talking about knowledge and competences. Skills related to the programming

development environments, programming languages, technology, work in teams, work with end users

etc., were not discussed. Due to this fact, it is quite doubtful the opinion that skills should strictly be

taught on college by various assignments, not in high schools, and we will neglect it as an outlier in our

data.

Several conclusions that could be driven from the third case study, which are related to student’s prior

knowledge in programming, are:

1. Student demonstrator explicitly states his unsatisfaction with students’ prior knowledge in

programming.

2. For the first few weeks or months students seem not to know “where they are and what is

going on”, and what is even worse they seem not to be very interested in programming and

they see no purpose in programming knowledge.

3. Mainly students who finished technical high schools actually have some kind of programming

knowledge whatsoever.

4. Enrolling students should have the basic idea how to make up an algorithm which includes

the use of variables, selection, iteration and functions.

5. Student-to-student experience shows that most of them struggle with the very basics of

programming.

6. Students with better prior knowledge are usually overconfident and stop actively attending

classes.

1.2.2.8. Comparing cases

In order to better understand the obtained data, we have prepared a table view which tries to

summarize and put into the relationship the opinions from three teachers who have different

experience in working with freshmen students. The summary is presented in the Table 1.

40

Table 1 – Review of teachers‘ experience

Concern

Experienced teacher Young teacher Teaching assistant

Curriculum

Basic computing skills of

students entering college are

much better than they used to

be.

Current curriculum of

(introductory) programming is

built with a prejudice that

students do not have any prior-

knowledge.

At the same time, current

curriculum of (introductory)

programming courses does not

plan sufficient teaching hours as

we have to teach students

programming from scratch.

Curriculum

results

As much as 13% of students

enrolling university have a fear

of programming.

For the first few weeks or

months students seem not to

know “where they are and what

is going on”, and what is even

worse they seem not to be very

interested in programming and

they see no purpose in

programming knowledge.

New

curriculum /

legislative

framework

New curriculum should be

developed, but more

importantly a new legislative

framework should also be

developed to cover some other

issues, such as to improve the

motivation for teachers with

programming knowledge to

come and teach in high schools.

Prior

knowledge in

related

subjects

It is beneficial for students to

have general IT knowledge and

knowledge of C and C++, and be

able to create algorithms, e.g. to

think in a programming way

when solving problems.

Those who programmed in

Python have less fear but more

challenges in learning C or C++.

Basic IT literacy as well as

knowledge in logic and

mathematics, will help student

to go through university

curricula. Actually any

theoretical or practical

knowledge will help a lot.

Mainly students who finished

technical high schools actually

have some kind of programming

knowledge whatsoever.

Prior

knowledge in

programming

Students enrolling university

have a diverse range of prior

knowledge, from those who

know nothing to those with a lot

of theoretical and applied

knowledge and skills.

When enrolling the university,

student should be familiar with

variables, data types, selections,

iterations and functions.

Student demonstrator is

unsatisfied with students’ prior

knowledge in programming.

Enrolling students should have

the basic idea how to make up

an algorithm which includes the

41

use of variables, selection,

iteration and functions.

Prior

competences

and skills

Only up to 10% of enrolling

students can find largest

element in array with the high

school knowledge.

Freshmen students in general

don’t posses any notable

competences or skills related to

programming

Student-to-student experience

shows that most of the students

struggle with the very basics of

programming concepts.

Students with better prior

knowledge are usually

overconfident and stop actively

attending classes.

How to

overcome

shortcomings

in knowledge

Students in high school should

learn basic programming skills

and habits, such as loops,

selections, process and basic

data structures.

Good programming practices

which include syntax checking,

testing requirements, and going

through all code blocks should

be acquired in high school.

Students are capable of self-

learning algorithmic problem

solving if provided with good

materials.

Utilizing a tool like Alice can help

those who have not been

exposed to structural

programming learn OOP.

Education of high school

teachers is very important.

From the table above it can be seen that teachers had a quite diverse views on the topic of the

interview. They gave a lots of personal opinions, either from some of their previous researches or from

their own experience and observations. Although some of the teachers introduced unplanned topic

into the conversation, the table shows that their opinions are very much aligned and that they are

complementary. The opinions on topics that are introduced by one or two teachers are not in contrast

to the opinion of other teachers in other topics.

We dare to say that such result which brought out more concerns and opinions that initially planned

is welcomed as it finally covered the whole lifecycle of educational concepts, from design to their

implementation and evaluation.

42

2. Conclusion on gap analysis

Considering all the aspects of this analysis, it is important to say that the problem with the gap analysis,

even on a national level, is deeper, more diverse, and more complex than it seemed at the first glance.

Given that there are no defined prerequisites for enrollment to computer science universities at the

legislative level, the level of OOP knowledge required as input to the universities cannot be established

and determined, except internally when students are already enrolled into a specific university which

might, or might not test such knowledge. Additionally, due to the fact that there are no pre-defined

conditions, students come from high schools with different levels of programming knowledge, from

those who do not even handle basic concepts to those who are able to solve complex problems.

However, the second group of students is much smaller.

The results of the questionnaire given to the first-year students, and presented in previous chapters,

gave us a better insight into the actual knowledge of students after finishing high school education

from the aspect of programming. The results are not encouraging considering that the students

showed a lack of understanding of basic programming concepts. However, they are also aware of their

gaps in knowledge. It is also evident that the majority of students are enrolling in universities after only

one or two years of studying informatics in high schools, which certainly cannot be enough to acquire

a sufficient level of competence and knowledge to successfully (or at least without a certain level of

difficulties) continue their education at STEM or IT-related university. What is discouraging is the fact

that students during their high school education were not sufficiently interested or motivated to

independently research topics and contents in the field of informatics, especially programming, which

now results in very poor prior knowledge. According to some of the students' answers, in high school,

they only learned the basic of computer architecture and Office programs, without any concepts

related to programming. Those students are now in IT university, without any programming prior skills,

especially if they didn’t study those topics on their own. This is related to the fact that most of the

students stated that they are not familiar with some basic programming concepts, such as iterations

or selection. This was also seen from their ability to solve some simple tasks in the form of code

analysis, where most of them got the wrong results.

As object-oriented programming is the fundamental basis of this entire project, it was important to

establish the level of competence of the students in that area as well. The results are devastating

considering that only 30% of students are familiar with the concepts of OOP, and according to their

answers in the questionnaire, it is evident that the majority of that 30% still do not recognize the basic

concepts. From the curricula of IT subjects in high schools, OOP is poorly represented, with an

insufficient number of teaching hours. This analysis proved this, given that only a small number of

respondents are familiar with the basic concepts of OOP. Regardless of prior knowledge of

programming, students also lack experience in teamwork, which is very much used at universities

through their work and involvement in various projects. From interviews conducted with teachers and

their research, it was pointed out that 13% of students are afraid of programming and also that

students coming from technical high schools have better prior knowledge compared to other schools.

Analyzing the correlation between the survey of students and the opinions and experiences of

teachers, it can be concluded that everything mentioned above coincides completely.

This ultimately leads to the fact that university teachers have to start from the basics of programming,

to teach students some basic concepts so that they can finally reach some level with which they can

successfully follow university-level course curricula. However, one of the teacher’s observations is that

students' basic computer skills are better today than in previous generations.

43

Another very important aspect of the gap analysis is the prior knowledge and skills that students should

have, that is, what teachers expect from students entering universities. Teachers clearly stated that

basic IT literacy as well as knowledge of logic and mathematics will help students to go through

university curricula. Actually, any theoretical or practical knowledge can help a lot. They also

mentioned that students in high school should learn basic programming skills and habits, such as

working with variables, data types, loops, selections, iterations, functions, and basic data structures.

Good programming practices which include syntax checking, testing requirements, and going through

all code blocks should also be acquired in high school. Besides general IT knowledge, it would also be

beneficial for students to possess knowledge of C and C++, and be able to create algorithms, e.g. to

think in a programming way when solving problems.

Teachers also proposed some recommendations to obtain a higher level of knowledge and skills in

programming for high school students. They mentioned that a new curriculum should be developed,

but more importantly, a new legislative framework to cover some other issues, such as to improve the

motivation for teachers with programming knowledge to come and teach in high schools, as, in their

opinion, motivation of high school teacher is very important. IT experts are not eager to teach in high

schools, where salaries are low, so the principals are forced to employ teachers who have only partial

knowledge of informatics and they are unable to cover higher demands in teaching programming.

Utilizing a tool like Alice (or similar) can also help those who have not been exposed to structural

programming to learn OOP.

We can conclude that there is a lot of work in front of all stakeholders, legislation enforcers to prepare

stable and motivating infrastructure and environment, high-school curriculum designers to take into

consideration the growing need for programming knowledge and STEM in general, institutions

educating teachers of informatics to enable them to teach programming and related concepts,

university curriculum designers and university teachers to build on high-school knowledge and to

students to take every opportunity to acquire the skills and competencies required in the future

dynamic market.

